

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 2C

Pearson Edexcel Level 1/Level 2 Certificate in Chemistry (KCH0 2C)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 4CH0_2C_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	C (4)		1
	The only correct answer is C A is not correct because there are 4 elements shown not 2		
	B is not correct because there are 4 elements shown not 3 D is not correct because there are 4 elements shown not 5		
(b)	2 NaOH + (1) $H_2SO_4 \rightarrow$ (1) $Na_2SO_4 + 2 H_2O$	Accept fractions and multiples	1
(c)	brine is a solution of sodium chloride in water	3 ticks with 2 correct scores 1	2
	the temperature used in the contact process is greater than 1000°C	3 ticks with 1 correct scores 0 4 or 5 ticks scores 0	
	an equation for the contact process is $SO_2 + H_2O \rightarrow H_2SO_4$ the reactions in the diaphragm cell are displacement		
	reactions the catalyst used in the contact process is vanadium(V) oxide		
		Total	4

Question number	Answer	Notes	Marks
2 (a)	D (3 periods and 8 groups)		1
	The only correct answer is D		
	A is not correct because there are 3 periods and 8 groups shown not 2 periods and 4 groups		
	B is not correct because there are 3 periods and 8 groups shown not 3 periods and 4 groups		
	C is not correct because there are 3 periods and 8 groups shown not 2 periods and 8 groups		
(b)	B (2)		1
	The only correct answer is B		
	A is not correct because there are 2 noble gases sh	own not 1	
	C is not correct because there are 2 noble gases sh	own not 3	
	D is not correct because there are 2 noble gases sh	own not 4	

Question number	Answer	Notes	Marks		
(c)	C (MgF ₂)		1		
	The only correct answer is C				
	A is not correct because MgF is not the correct form	nula for magnesium fluoride			
	B is not correct because Mg₂F is not the correct formula for magnesium fluoride				
	D is not correct because Mg ₂ F ₂ is not the correct fo	rmula for magnesium fluoride			
(d)	M1 (28 × 0.922) + (29 × 0.047) + (30 × 0.031) OR	ACCEPT (28 × 92.2) + (29 × 4.7) + (30 × 3.1) 100	2		
	28.109				
	M2 28.1	Answer must be to one decimal place Correct final answer with no working scores 2			

Question number	Answer	Notes	Marks
(e)	•• • F •	M1 all four Si-F bonding pairsM2 all 24 non-bonding electrons	2
	F × Si × F	M2 DEP on M1	
	F F	ALLOW any combination of dots and crosses	
	••	If overlapping/touching circles used both electrons must be within the overlapping/touching area	
		IGNORE inner shell electrons even if incorrect	

Question number	Answer		Notes	Marks
2 (f) (i)	M1	intermolecular forces (of attraction) / forces (of attraction) between molecules	ALLOW intermolecular bonds/van der Waals forces/London forces/dispersion forces/instantaneous dipole-induced dipole forces	2
	М2	stronger in SiCl ₄ /weaker in SiF ₄	ACCEPT more energy is required to overcome the forces in SiCl ₄ (or reverse argument)	
			M2 DEP on M1	
			ACCEPT attraction between SiCl ₄ molecules is greater (than that between SiF ₄ molecules) or reverse argument for 2 marks	
			Award 0/2 if any reference to breaking covalent bonds	
(ii)	M1	SiO ₂ has strong covalent bonds (that must be broken)	ACCEPT strong intramolecular bonds/forces ACCEPT strong bonds between the atoms REJECT any mention of intermolecular forces or ionic bonding	2
	М2	(whereas) SiCl ₄ has weak intermolecular forces (of attraction must be overcome)	ALLOW intermolecular bonds/van der Waals forces/London forces/dispersion forces/instantaneous dipole-induced dipole forces	
			ACCEPT more energy required to break covalent bonds in SiO ₂ than is required to overcome intermolecular forces (of attraction) in SiCl ₄ for 2 marks	
			Total	11

Question number	Answer	Notes	Marks
3 (a)	electrons	ACCEPT e⁻ or e	
(b)	not (chemically) reactive / does not react (with the electrolytes/with the products of electrolysis)	ALLOW unreactive ALLOW non-reactive IGNORE references to full outer shell of electrons	1
(c)	M1 PbBr₂ needs to be molten/liquid/meltedM2 so that the ions can flow/move/are mobile	ACCEPT solid PbBr ₂ does not conduct ACCEPT the ions cannot flow/move/are not mobile in the solid IGNORE references to carry charge REJECT references to electrons moving	2
(d) (i)	(positive) chlorine AND oxygen (negative) hydrogen	ACCEPT Cl ₂ for chlorine and O ₂ for oxygen ACCEPT names in any order ACCEPT H ₂ If both name and formula given, mark name only	2
(ii)	M1 $2CI^{-} \rightarrow CI_{2} + 2e^{(-)}$ M2 $2H_{2}O \rightarrow 4H^{+} + O_{2} + 4e^{(-)}$	ACCEPT $2CI^{-} - 2e^{(-)} \rightarrow CI_{2}$ ALLOW $4OH^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{(-)}$	3
	M3 $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ MARK EQUATIONS INDEPENDENTLY OF ANSWERS GIVEN IN 3(d)(i)	ALLOW $2H^+ + 2e^{(-)} \rightarrow H_2$ ACCEPT multiples/fractions in half-equations	
(e)	M1 $n[Cu] = 0.04(0) \div 2 \text{ OR } 0.02(0) \text{ (mol)}$ M2 mass[Cu] = 1.3 (g) OR M1 x 63.5 correctly evaluated	ACCEPT 1.27 (g) ACCEPT 1.28 (g) using 64 instead of 63.5 Correct final answer with no working scores 2	2
		Total	11

Question number			Answer	Notes	Marks
4	(a)	(i)	M1 A and B and C	ACCEPT formulae copied from table	2
			M2 (they/all) contain only carbon and hydrogen (ato	oms) ACCEPT C and H	
				ACCEPT words with same meaning as only, eg solely, exclusively, just etc	
				ACCEPT particles/elements in place of atoms	
				REJECT ions/molecules/compounds in place of atoms	
				REJECT element/mixture in place of they/all	
				REJECT H ₂	
				IGNORE D has Cl/another element as well	
		(ii)	M1 B		2
			M2 (because) it shows all the bonds (in the molecule)	ACCEPT converse argument about (all) the others	

Question number	Answer	Notes	Marks
4 (b)	(reaction 1):		
	Any two from:		4
	M1 (it produces) pure(r) ethanol/alcohol/product	IGNORE more concentrated	
	M2 (it is a) fast(er) (reaction)	ALLOW does not need further processing	
	M3 (it has a) greater atom economy	IGNORE no waste products	
	M4 no carbon dioxide produced (so less pollution)	ALLOW no greenhouse gas produced	
	(reaction 2):		
	Any two from:		
	M5 (it) uses renewable/sustainable resources / does not use finite resources	ACCEPT can be used in countries with no oil reserves/with available land /with suitable climate to grow sugar cane	
	M6 (it) uses atmospheric pressure / (it) does not need high pressure / (it) works at low pressures	/ With suitable climate to grow sugar care	
	M7 (it) works at low/just above room temperature / (it) does not need much heat (energy)	ALLOW 30 to 40 °C ACCEPT thermal energy	
		IGNORE references to batch and continuous processes	
		IGNORE references to lower cost	

	uesti iumb			Answe	er		Notes	Marks
4	(c)	(i)	but-2-ene				ACCEPT 2-butene or 2-butylene	2
							ACCEPT butene or butylene or but-1-ene for 1 mark	
		(ii)	colourless				IGNORE clear IGNORE starting colour even if incorrect	1
	(d)	(i)	M1 (compounds/molecules that have the) same molecular formula/contain the same number of each type of atom			ain the same	ACCEPT both have molecular formula C ₄ H ₈ REJECT elements for compounds/molecules once only	2
			M2 (but h	nave) different s	tructural	formulae	ACCEPT different structures /different displayed formulae / atoms arranged differently	
		(ii)		addition	✓		3 ticks with 2 correct scores 1	2
				dehydration			3 ticks with 1 correct scores 0	
				hydration	√		4 or 5 ticks scores 0	
				oxidation				
				reduction				
					'	_		

Question number	Answer	Notes	Marks
4 (e) (i) (ii)	poly(chloroethene) $ \begin{array}{cccc} H & Cl \\ & \\ n & C = C \\ & \\ H & H \end{array} $ $ \begin{array}{cccc} H & Cl \\ & \\ C - C \\ & \\ H & H \end{array} $	Do not penalise missing brackets or spaces in name ACCEPT polyvinyl chloride M1 displayed formula of chloroethene (on left) M2 at least one correct repeat unit drawn as a displayed formula and continuation bonds M3 balancing using n (or equivalent) on left and n on right M3 DEP on M1 and M2 ACCEPT n anywhere before the monomer and anywhere after the brackets, but not before	3
		Total	19

Question Answer		Notes	Marks
5 (a) (i)	$CH_3OH + O_2 \rightarrow CO + 2H_2O$	ACCEPT multiples and fractions	2
	M1 all formulae correct M2 correctly balanced		
	,	M2 DEP on M1	
(ii)	thermal energy/heat (energy) lost to the surroundings/environment	ACCEPT lost to atmosphere/beaker/thermometer	1
		ACCEPT evaporation of water/methanol	

Question number	Answer	Notes	Marks
5 (b) (i)	M1 (Q =) $125 \times 4.2 \times 36$		2
	M2 = 18900 (J) /19000 (J)	ACCEPT answer in kJ if unit included Correct final answer with no working scores 2 ALLOW one mark for 1.5 x 4.2 x 36 = 226.8 ALLOW one mark for 126.5 x 4.2 x 36 = 19126.8	
(ii)	M1 mass[CH ₃ OH] = 84.7 - 83.2 OR 1.5 (g)		4
	M2 $n[CH_3OH] = 1.5 \div 32$ OR 0.046875 (mol)	ACCEPT any number of sig fig except 1, eg 0.047	
	OR M1 ÷ 32		
	M3 $\Delta H = 18900 \div \text{M2} \text{ OR } 403200 \text{ (J/mol)}$	ACCEPT M2 from (b)(i) ÷ M2 from (b)(ii) ACCEPT any number of sig fig	
	M4 $\Delta H = -400 \text{ (kJ/mol)}$	ACCEPT any number of sig fig, eg 403, 403.2	
		Negative sign must be included	
		(+) 400/403/403.2 etc scores 3	
		Mark CSQ throughout	
		Correct final answer with no working scores 4	

Alternative Method

_	iestion umber	Answer	Notes	Marks
5	(b) (ii)	M1 mass[CH ₃ OH] = 84.7 - 83.2 OR 1.5 (g)		4
		M2 18 900 ÷ 1.5 OR 12 600 OR 18 900 ÷ M1	ACCEPT any number of sig fig except 1, eg 0.047	
		M3 $\Delta H = 12600 \times 32$ OR 403200 (J)		
		M4 $\Delta H = -400 \text{ (kJ/mol)}$	ACCEPT M2 from (b)(i) ÷ M2 from (b)(ii) ACCEPT any number of sig fig	
			ACCEPT any number of sig fig, eg 403, 403.2	
			Negative sign must be included	
			(+) 400/403/403.2 etc scores 3	
			Mark CSQ throughout	
			Correct final answer with no working scores 4	

Question number		Answer		Notes	Marks	
5	(b)	(iii)		oxygen/other reactant missing from methanol product level / carbon dioxide and	ACCEPT product level should be below reactant level	2
				water above reactant level	ACCEPT answers shown on diagram	
					IGNORE references to activation energy IGNORE references to missing x-axis	

Answer	Notes	Marks 4
Route 1:		
M1 Σ (bonds broken) = (412 × 3) + 360 + 463 + (496 × 1.5)		
OR 2803 (kJ/mol)		
M2 Σ (bonds made)= (743 x 2) + (463 x 4)		
OR 3338 (kJ/mol)	IGNORE negative sign	
Route 2:		
M1 Σ (bonds broken) = (412 × 3) + 360 + (496 × 1.5)		
OR 2340 (kJ/mol)		
M2 Σ (bonds made) = (743 x 2) + (463 x 3)		
OR 2875 (kJ/mol)	IGNORE negative sign	
M3 Correct calculation of difference between M1 and M2	IGNORE sign	
M4 If M2 > M1 final answer must be negative	Expected final answer is -535	
If M2 < M1 final answer must be positive	Positive sign not required If a clear statement is made that the reaction is exothermic, then sign can be negative Correct final answer with no working scores 4	15
	 Route 1: M1 Σ(bonds broken) = (412 × 3) + 360 + 463 + (496 × 1.5)	 Route 1: M1 Σ(bonds broken) = (412 × 3) + 360 + 463 + (496 × 1.5)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom