Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 2C

Pearson Edexcel Level 1/Level 2 Certificate in Chemistry (KCHO 2C)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 4CHO_2C_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer		Notes	Marks
1 (a)	C (4) The only correct answer is C A is not correct because there are 4 elements shown not 2 B is not correct because there are 4 elements shown not 3 D is not correct because there are 4 elements shown not 5			1
(b)	$2 \mathrm{NaOH}+$ (1) $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ (1) $\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$		Accept fractions and multiples	1
(c)	brine is a solution of sodium chloride in water the temperature used in the contact process is greater than $1000^{\circ} \mathrm{C}$ an equation for the contact process is $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ the reactions in the diaphragm cell are displacement reactions the catalyst used in the contact process is vanadium(V) oxide	\checkmark	3 ticks with 2 correct scores 1 3 ticks with 1 correct scores 0 4 or 5 ticks scores 0	2
			Total	4

Question number	Answer	Notes	Marks
2 (a)	D (3 periods and 8 groups) The only correct answer is D A is not correct because there are 3 periods and 8 groups shown not 2 periods and 4 groups B is not correct because there are 3 periods and 8 groups shown not 3 periods and 4 groups C is not correct because there are 3 periods and 8 groups shown not 2 periods and 8 groups		1
(b)	B (2) The only correct answer is B A is not correct because there are 2 noble gases shown not 1 C is not correct because there are 2 noble gases shown not 3 D is not correct because there are 2 noble gases shown not 4		1

Question number	Answer	Notes	Marks
(c)	C $\left.\quad \mathbf{M g F}_{2}\right)$ The only correct answer is \mathbf{C} A is not correct because MgF is not the correct form B is not correct because $\mathrm{Mg}_{2} \mathrm{~F}$ is not the correct for D is not correct because $\mathrm{Mg}_{2} \mathrm{~F}_{2}$ is not the correct for	ula for magnesium fluoride mula for magnesium fluoride mula for magnesium fluoride	1
(d)	$\begin{array}{\|ll} \text { M1 } & (28 \times 0.922)+(29 \times 0.047)+(30 \times 0.031) \\ & \text { OR } \\ & 28.109 \\ \text { M2 } & 28.1 \end{array}$	ACCEPT $\frac{(28 \times 92.2)+(29 \times 4.7)+(30 \times 3.1)}{100}$ Answer must be to one decimal place Correct final answer with no working scores 2	2

Question number	Answer	Notes	Marks
(e)		M1 all four Si-F bonding pairs	
		M2 all 24 non-bonding electrons	
		ALLOW any combination of dots and crosses If overlapping/touching circles used both electrons must be within the overlapping/touching area IGNORE inner shell electrons even if incorrect	

Question number	Answer	Notes	Marks
3 (a)	electrons	ACCEPT e^{-}or e	1
(b)	not (chemically) reactive / does not react (with the electrolytes/with the products of electrolysis)	ALLOW unreactive ALLOW non-reactive IGNORE references to full outer shell of electrons	1
(c)	M1 PbBr_{2} needs to be molten/liquid/melted M2 so that the ions can flow/move/are mobile	ACCEPT solid PbBr_{2} does not conduct ACCEPT the ions cannot flow/move/are not mobile in the solid IGNORE references to carry charge REJECT references to electrons moving	2
(d) (i) (ii)	(positive) chlorine AND oxygen (negative) hydrogen M1 $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$ M2 $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{(-)}$ M3 $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$ MARK EQUATIONS INDEPENDENTLY OF ANSWERS GIVEN IN 3(d)(i)	ACCEPT Cl_{2} for chlorine and O_{2} for oxygen ACCEPT names in any order ACCEPT H_{2} If both name and formula given, mark name only ACCEPT $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}$ ALLOW $4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{(-)}$ ALLOW $2 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2}$ ACCEPT multiples/fractions in half-equations	2 3
(e)	$\begin{aligned} & \text { M1 } n[\mathrm{Cu}]=0.04(0) \div 2 \text { OR } 0.02(0)(\mathrm{mol}) \\ & \text { M2 } \text { mass }[\mathrm{Cu}]=1.3(\mathrm{~g}) \\ & \quad \text { OR M1 } \times 63.5 \text { correctly evaluated } \end{aligned}$	ACCEPT 1.27 (g) ACCEPT $1.28(\mathrm{~g})$ using 64 instead of 63.5 Correct final answer with no working scores 2	2
		Total	11

Question number	Answer	Notes	Marks
4 (a) (i)	M1 A and B and C M2 (they/all) contain only carbon and hydrogen (atoms) M1 B M2 (because) it shows all the bonds (in the molecule)	ACCEPT formulae copied from table ACCEPT C and H ACCEPT words with same meaning as only, eg solely, exclusively, just etc ACCEPT particles/elements in place of atoms REJECT ions/molecules/compounds in place of atoms REJECT element/mixture in place of they/all REJECT H_{2} IGNORE D has $\mathrm{Cl} /$ another element as well ACCEPT converse argument about (all) the others	2

Question number	Answer	Notes	Marks
4 (b)	(reaction 1):		
	Any two from:		4
	M1 (it produces) pure(r) ethanol/alcohol/product M2 (it is a) fast(er) (reaction)	IGNORE more concentrated ALLOW does not need further processing	
	M3 (it has a) greater atom economy	IGNORE no waste products	
	M4 no carbon dioxide produced (so less pollution) (reaction 2):	ALLOW no greenhouse gas produced	
	Any two from:		
	M5 (it) uses renewable/sustainable resources / does not use finite resources	ACCEPT can be used in countries with no oil reserves/with available land /with suitable climate to grow sugar cane	
	M6 (it) uses atmospheric pressure / (it) does not need high pressure / (it) works at low pressures		
	M7 (it) works at low/just above room temperature / (it) does not need much heat (energy)	ALLOW 30 to $40^{\circ} \mathrm{C}$ ACCEPT thermal energy	
		IGNORE references to batch and continuous processes	
		IGNORE references to lower cost	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
4 (c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
but-2-ene \\
colourless
\end{tabular} \& \begin{tabular}{l}
ACCEPT 2-butene or 2-butylene \\
ACCEPT butene or butylene or but-1-ene for 1 mark \\
IGNORE clear \\
IGNORE starting colour even if incorrect
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(d) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 (compounds/molecules that have the) same molecular formula/contain the same number of each type of atom \\
M2 (but have) different structural formulae
\end{tabular} \& \begin{tabular}{l}
ACCEPT both have molecular formula \(\mathrm{C}_{4} \mathrm{H}_{8}\) REJECT elements for compounds/molecules once only \\
ACCEPT different structures /different displayed formulae / atoms arranged differently \\
3 ticks with 2 correct scores 1 \\
3 ticks with 1 correct scores 0 \\
4 or 5 ticks scores 0
\end{tabular} \& 2

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
5 (a) (i)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{M 1}$ all formulae correct M2 correctly balanced	ACCEPT multiples and fractions	2
(ii)	M2 DEP on M1 thermal energy/heat (energy) lost to the surroundings/environment	ACCEPT lost to atmosphere/beaker/thermometer	
ACCEPT evaporation of water/methanol			

Question number	Answer	Notes	Marks
5 (b) (i)	$\begin{aligned} & \text { M1 }(\mathrm{Q}=) 125 \times 4.2 \times 36 \\ & \text { M2 }=18900(\mathrm{~J}) / 19000(\mathrm{~J}) \end{aligned}$	ACCEPT answer in kJ if unit included Correct final answer with no working scores 2 ALLOW one mark for $1.5 \times 4.2 \times 36=226.8$ ALLOW one mark for $126.5 \times 4.2 \times 36=19126.8$	2
(ii)	M1 $\operatorname{mass}\left[\mathrm{CH}_{3} \mathrm{OH}\right]=84.7-83.2$ OR $1.5(\mathrm{~g})$		4
	M2 $n\left[\mathrm{CH}_{3} \mathrm{OH}\right]=1.5 \div 32$ OR 0.046875 (mol)	ACCEPT any number of sig fig except 1 , eg 0.047	
	OR M1 $\div 32$		
	M3 $\Delta H=18900 \div$ M2 OR $403200(\mathrm{~J} / \mathrm{mol})$	ACCEPT M2 from (b)(i) \div M2 from (b)(ii) ACCEPT any number of sig fig	
	M4 $\Delta H=-400(\mathrm{~kJ} / \mathrm{mol})$	ACCEPT any number of sig fig, eg 403, 403.2	
		Negative sign must be included	
		(+) 400/403/403.2 etc scores 3	
		Mark CSQ throughout	
		Correct final answer with no working scores 4	

Alternative Method

Question number	Answer	Notes	Marks
5 (b) (ii)	M1 $\operatorname{mass}\left[\mathrm{CH}_{3} \mathrm{OH}\right]=84.7-83.2$ OR $1.5(\mathrm{~g})$ M2 $18900 \div 1.5$ OR 12600 OR $18900 \div$ M1 M3 $\Delta H=12600 \times 32$ OR 403200 (J) M4 $\Delta H=-400(\mathrm{~kJ} / \mathrm{mol})$	ACCEPT any number of sig fig except 1, eg 0.047 ACCEPT M2 from (b)(i) \div M2 from (b)(ii) ACCEPT any number of sig fig ACCEPT any number of sig fig, eg 403, 403.2 Negative sign must be included (+) 400/403/403.2 etc scores 3 Mark CSQ throughout Correct final answer with no working scores 4	4

Question number		Answer	Notes	Marks
5	(b) (iii)	M1oxygen/other reactant missing from methanol M2product level / carbon dioxide and water above reactant level ACCEPT product level should be below reactant level ACCEPT answers shown on diagram IGNORE references to activation energy IGNORE references to missing x-axis	2	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

